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Abstract

In this work, we introduce a new method for solving some partial
differential equations called double Aboodh-Kamal transform, some useful
properties for the transform are presented. Furthermore, we use this
transform for solving some linear partial differential equations and find
some functions.
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1- INTRODUCTION

In previous years, much notice has been given to dealing with the single,
double and triple transform [5, 6, 9, 10, 11, 12], which have many
applications in various fields of mathematical sciences and engineering such
as acoustics, physics, chemistry, etc.,.

In recent years, great attention has been given to deal with the double
integral transforms; see for example, [3, 8, 13]. Alfageih and Misirli in [4]
dealt with double Shehu transform to get the solution of initial and boundary
value problems in different areas of real life science and engineering.

Analogous to [3], we applied a new double Aboodh-Kamal transform to
solve some partial differential equations subject to the initial and boundary
conditions, through the derivation of general formula for solutions of these
equations, or by applying the double Aboodh-Kamal transform directly to
the given equation. The aim of the present study is to introduce a new
method for solving some partial differential equations subject to the initial
and boundary conditions called double Aboodh-Kamal transform, the
definition of double Aboodh-Kamal transform and its inverse. We also
discussed some theorems and properties about the double Aboodh-Kamal
transform and gave the double Aboodh-Kamal transform of some
elementary functions. Moreover, we implement the double Aboodh-Kamal
transform method to some equations.

2- PRELIMINARIES
Definition 2.1. [1] The single Aboodh transform of the real function u(x) of
exponential order is de ned over the set of functions

M= {u(:c) 3K, 1,1 > 0, u(z)] < Kell™, 2 e (<1) x [0,00), i = 1,2}1

by the following integral
Au@] = Flo) = - [ e ru@yde
JO
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It converges if the limit of the integral exists, and diverges if not. And the
inverse Aboodh transform is

a+ioo

ATYF(Q)] = u(z) = %/ qe?’ F(q)dg, o = 0.

—i00
Definition2.2. [2] Let A be functions set defined by
A= {u(t) : 3IM, 3,7 > 0, Ju(t)| < Mei, t e (1) x [0,00), j = 12},

Where M is a constant and 71,72 are finite constants or infinite.

For a function of exponential order, the single Kamal integral transform of
the real continuous function u(¢) is defined as follows

Klu(t)] = F(r) = ./OOO e~ u(t)dt
= lim i e~ ru(t)dt,

Where e‘% is the kernel function, and K].] is the Kamal transform operator.
Provided that the integral exists.

Moreover, the inverse Kamal transform is defined by
u(t) = K~ 'F(r)] = L /ﬁHoo e%F(l)dr, B> 0.
211 Jg_ino T -
In the next definition, we introduce the double Aboodh-Kamal transform.

Definition 2.3. The double Aboodh-Kamal transform of the function u(z,t)
of two variables = > 0 and ¢ > 0 is denoted by A, K;[u(z,t)] = F(g,r) and defined as

1/ / et 2)y(g, t)dudt

= - lml;l / / oty u(z,t)dzdt. (2.1)
g a—o0,b—00

A:cKt[u(*TjH = F(Q: T)

It converges if the limit of the integral exists, and diverges if not.

[Al — Saeed University Journal of Applied Sciences @ Volume (8), Number (1), August, 2025 ]




[Ali Al-Aati, et al. The Double Aboodh-Kamal Transform And Thei...]

Definition2.4. The inverse double Aboodh-Kamal transform of a function
F(g,r)is givenby A 'K, '[F(q,7)] = u(x,t).

Equivalently,
B+ico

B B 1 a+ico . . 1
) = 4K P = g [t (/ | E"F(q,;)a’-r)dq- 22

where (¥ and @ are real constants.

3- EXISTENCE AND UNIQUENESS OF THE DOUBLE ABOODH-
KAMAL TRANSFORM

Definition3.1. [7] A function (=, £) is said to be of exponential orders

An>00n0 <xt <oo, if there exists positive constants L, X and T such that

lu(z,t)| < Le* ™ Vo> X, t >T,

and we write
u(z,t) = o(e* M), as x — 0o, t = 0.

Or equivalently,

ot . . 1
lim e @) |y(z, t)| < L lim e~ (@ Nze—(z-m)t = 0, g>A —>n.
r

T—+00, t—+00 T—00,t—00

Theorem3.2. [5] Let u(z,t) be a continuous function in every finite intervals
(0,X) and (0,T) and of exponential order .(xz-+nt) then the double Aboodh-
Kamal transform of u(x,t) exists for all ¢ > X\ and + > 7.

Proof. Let w(zx,t) be of exponential order ¢(*z+7t) such that

’F(% r)

Catnt) vops X ¢t >T.

1 [ [ ¢
= ’—/ / e\ Ty t)dadt
4Jo Jo
1 [ e ¢
< 7/ / e (@) jy(x, t)|dadt
< / / o~ (@t 8) (O 0t gt
= / el A)”d:v/ —G=mtgy
4 Jo 0

Lr
alg— N1 —nr)’

Then. we have

Thus, the proof is complete.

Theorem3.3. Let Fi(¢,r)and Fy(q,r) be the double Aboodh-Kamal transform
of the continuous functions w, (=, ¢) and wus(x,¢) defined for x,t > 0 respectively.
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If Fi(q,r) = Fa(q, 1), thenui(z,t) = ua(x, t).

Proof. Assume that o« and 3 are sufficiently large, since

—i00 —i00

1 a+ioo B4+ioc . 1
u(z,t) = (27”)2/a-m ge™ /ﬂ_m €7F1(qa;)d7“ dq

P 1 a-+i00 - B+ico . 1
wet) = ALK ) = s [ et [3 ¢t Flg, )dr )da,

we deduce that

1 a+ioo ﬁ+ioot 1
= — A 2 Fo(q, —)dr | d
el A VAT U

= ug(z,t).

This ends the proof of the theorem.

4- SOME USEFUL PROPERTIES OF THE DOUBLE ABOODH-
KAMAL TRANSFORM

4.1. Linearity property. If the double Aboodh-Kamal transform of

functions u, (x,t)and us (=, t) are Fy(q,r) and Fu(q,r) respectively, then the double

Aboodh-Kamal transform of aui(z,t) + fuz(z,t) is given by aFy(q,r) + fFa(g, ),

where o and /3 are arbitrary constants.

Proof.

8

8

A Kilaui (z,t) + Bug(z,t)] = e~ (9t (aul(:f:: t)+ ,B-UQ(I,t))dIdt

e~y (2, ) dudt

2
2

e~ Euy (2, t) dudt

ESHR=RES TNl

= 2 (Q:T) + BFZ(QT) - (41)

4.2. Shifting property. If the double Aboodh-Kamal transform of
function w(zx,t) is #(s:7), then for any pair of real constants a, 5 > 0,

>

I
o
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Proof.

1/ e @s )=t Dy 1)t
4Jo Jo

S
qJo Jo

= (q;a)F(qa,lTﬁT>. (4.3)

4.3. Change of scale property. If the double Aboodh-Kamal transform of
the function u(z,t)1s 7(¢.),then the double Aboodh-Kamal transform of
function wu(az, 8t)is given by ;25 F(Z, 8r).

Proof. Using the definition of double Aboodh-Kamal transform, we get

A K ey (g 1)

(=) u(z, t)dedt

A, Ky[u(ax, §t)] = B / / e~ 2y (s, Bt)dxdt.
4 Jo

Let v = v, 7 = [3t. then

A Ky [u(or, §t)] = rlﬁrj’/ / e Fru(v, T)dudr
1]
[
= = SF( 1. 8r). (4.4)
4.4. Derivatives properties. 0O

4.4. Derivatives properties. If A, K,[u(x,t)] = F(q,r), then

dulx,t)
dr

(1) A, K t[ ]: gF(q,7) — éff[-u.(n,f)]. (4.5)

Proof.

ALK [().u.[.::.,t)] _ / [ .:-iw—-)()” T, T}d et
Aclle| =57 7/, .

1
= e v dt / e Ty (x, t)dx |.
A (ff 0 (1) )

Using integration by parts, let u = e 9", dv = u.(x, t)dr, then we obtain

ALK, [%] Ax {:_%cit{é (—'u.{{), t)+q ]:L e ulx, t)ci.;:) }

= gqF(q,7)— éf\’[u[(},f)].

dulr, f)] 1

(2) A;,_Kt[ 5| = S Fa.r) = Az, 0)]. (4.6)
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FPraof.

Al . y
ALK, [ri‘nt.r. f.] f [ o gz 4! -:Ju[e t ddi
i aty
= e~ Mdr Fag{x. t)elt
r;j: [fl; * {r.t) )

e , 1 .
Using integration by parts, let uw = ¢ 7, dv = w{z. t)at, then we obtain

- T o i
ALK, d”l_J"l'll = ! [ . ""’fI.r(—u[J'_l?] - lf e ‘-"ulj.l'.fflrj'f}
Lo iq Jdn rJu

1
= I—I"l:q'. ) — Az, 0).

Fulx, il P
(3 ALK, [L =g Flg.r)— K|ul, t]] — — & w, (1L {4.71
i | g
Proof.
. [ ulx, r\ l’ /‘ - (Fulzd)
.-!,fl.r[ e = r.l Or2 ———— i

= j; e -ri![q-/;e e .']d'.r:].

[ntegration by parts twice, we obtain

FEulx, i

. T, s 1 . ) N :
A: K r'.i'.-r-' -- _ [. _r.‘rj'fliq{—n,.[li'.fj—r,-{—u[il..']+r,|'.f; e '-".e.:[.a'.f}ri.r}})

o 1 .
= g Flg.r) — Kullt)] — =K |u. 0, 5]
i

Fulx, 417 1 1
(1) ALK [r D 2 S Plgr) — - Alufx, 0)] — Afuefr, 0)]. (4.8
atd Lot T ' ! ' ! L
FProof.
ALK [ri' 'I,”l z. )] f f (14 _|”" u(r, 'ﬂ'r!udf
a q ar
= ey fr &~ gy, B)elt
7 ]:(l { i :I
[ntegration by parts twice. we obtain
[ Fulr, 7 | ‘ |
.»Lh_.’# = —[ i '-“u'.r{—u.[r.[]‘.-— —ufz, 0] + —[ i J-'u[J'..':wI.F:]
o] q Ja T rt fa

1 1
= ;Fl:r;. r) — I—.-'Lln'll:.i'.ﬂ:lj — _-'ll.'|,-|:_i-_1_l:|]_

Fulx. i)

sy 4 g [
W l‘h'[ Aot

[r 1
= ilff'qu'. r) — gdfufx, 0)] — — K [a, {0, £)]. (4.4
r q
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Proof.

u(x,t) I Y A e 7(q:l‘+£l)[')2u(rz,t)

o0 . 1 o0 .
= / Pf?df(f / ef“'"‘u.u(ﬂfat)dﬂc)-
0 q Jo

Integration by parts twice, we obtain

ALK, [02:;1{7;;1)] = -/('90 efﬁdt(é{fu,,((],t) + q/u.x e Ty (x, f)dT})

)

1 o r e i
= ——K[ul(0,8)] + a f ef‘”dm/ e T (x, t)dt
q qJo 0

1 q/m —ar ].-/‘0(J _t
= ——Klus(0,8)]+ = e dx( —u(x,0)+ = e rulx,t)dt
Kl 0.0]+ 7/ (mute 0+ f (. t)dt

= EF(q, r) — qgAlu(z,0)] — éK[?At(O,f)].

5. THE DOUBLE ABOODH-KAMAL TRANSFORM OF
SOME ELEMENTARY FUNCTIONS

(1) If the function w(x,t) = 1, then

1 oo bt 3 T
AxKfu(a, t)] = = / f 7
qJo 0 q

(2) If the function u(z, t) = =zt, then

1 = r= ¢ r?
Ao ulw, )] = = f / =+ D tdzdt = T
9 Jo 0 g
(3) If the function u(z, t}) = z™t™, n,m =0,1,2, ..., then
1 (=% 20 . ,r-m+1
Akifulz,t)] = 2 [ [T e e dadt = nimi
7 Jo 0 q

(4) If the function u(z,t) = zt¥, ¢ > —1, v > —1, then

1 o {=a] . 1 ==} o0 .
A Ky[u(z, t)] = —f / e @Dt drdt = —/ e’q‘"z"dxf e rtVdt.
aJo Jo 4.Jo 0

Letf=gzx and #n= -f;, then we have

1 [aa] 20
—Era 1 —T)
A K [ulz, t)] = _q“+2/0 e t¢ df(r [9 e "y d'.r])

Tlo+1
= T g gy

|

Where I'(.) is the Euler gamma function.
(5) If the function wu(z, £) = ¢**+24, then

Aeitfutz, )= [ [ et e iz r

A [UT, = - e e rdf == ——m
o Jo a(g — a)(1 - fr)

(6) If the function u(z,t) = sin{ar + St), then

1 /= e t

- f / e~ @+ sin(ax + Bt)dzdt

250 Jo

r(a + Bgr)
g{g® + a®)(1 + §2r2)’

Ax—}—{t ["'-"‘ (-‘Tv t))]

(5.6)
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(7) If the function u(z, ) = cos(az + St), then

A K fu(x,t)] = 1[ / e~ cos(ax + Bt)dudt
qJo Jo
r(g - ofr) \
= . 5.7)
a(@® + a)(1 + p2r2) (5.7)
Consequently,

. (o + Bqr) \

Ay Ky [sinh(ax t)] = , .
¢[sinh(ax + Bt)] A — 21— B2’ (5.8)
A, Ky[cosh(ax + 5t)] = rla + ofr) (5.9)

q(q* — a?)(L = B%r?)’
6- APPLICATIONS
In this section, we apply the double Aboodh-Kamal transform method to
solve linear partial differential equations. Let the second-order
nonhomogeneous partial differential equation in two independent variables
be in the form
Bz, (z,t) + Cugg(x, 1) + Dug(z,t) + Eug(,t) + Gu(z,t) = h(z,t), (z,t) € R, (6.1)
with the initial conditions
w(zx,0) = hy(x), ug(z,0) = ho(x), (6.2)
and the boundary conditions

u(0,t) = hs(t), uz(0,1) = hy(t), (6.3)
where B, C, D, E and G are constants and h(x, t) is the source term.

Using the property of partial derivative of the double Aboodh-Kamal
transform for equation (6.1), single Aboodh transform for equation (6.2) and
single Kamal transform for equation (6.3) and simplifying, we obtain that

(S + E)u(g) + Clialq) + (B + 2)ha(r) + Sha(r) + H(g,7)

F(q,7) = .
(@) (B+ S +Dg+£+6)

(64)

where H(q,r) = Agki[h(z,1)].
Finally, solving this algebraic equation in F (g, r) and taking the inverse

double Aboodh-Kamal transform on both sides of equation (6.4), yields

(S + EYa(g) + Chalq) + (B+ D)ha(r) + Eha(r) + H(g,7)

— A1l
uz,t) = A K, (B + 5 +Dg+£+G)

(6.5)
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which represent the general formula for the solution of equation (6.1) by
the double Aboodh- Kamal transform method.

Example 6.1. Use double Aboodh-Kamal transform method to solve the
following first order nonhomogeneous partial differential equation

g (1) + ug(z,t) = 322 + 3t2, (6.6)
subject to the conditions
u(z,0) = 2°, u(0,t) = 12, (6.7)

Solution.
Applying the double Aboodh-Kamal transform on both sides of equation (6.6), we have

AJ:I{f, [U:L-(Iif, t) + Uy (:L': t)] = AJ'I(t [31‘2 + 3t2] '

By linearity property and partial derivative properties of double Aboodh-Kamal transform, we
get

) 1 1 6r  6r
4F(g,7) — SK[u(0,6] + ~F(g,r) - Alulz,0)) = = + 2 (63)
q r q q
where
y 6r  6r
ALK [30% 4387 = — + —.
f[ ] ¢
Substituting
6 1
ﬁ.l(q) = E, ﬁ.;g(?") =06r 3

into equation (6.8) and simplify to obtain

6lgr+1) | 6r(gr +1)

gr+1\
( . )I"(q.?"): 5 2
q q

r

or equivalently,

6(q-r+1)( r ) 61‘”({;7‘4—1)( r )_ 6r 6

J.[“ N = = - —a (‘9
(g,7) po 7 pr ; (6.9)

RS
Taking the inverse double Aboodh-Kamal transform of equation (6.9), we get
6r  6r'

7

u(z,t) = AJVK =z 413

Which is the required solution of (6.6).
Example 6.2. Consider the following linear problem

gt(z,t) = —x + u(z. t) (6.10)
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subject to the conditions
u(z,0) =z + €, u(0,1) = et

Solution.
Applying the double Aboodh-Kamal transform on both sides of equation (6.10), we get

ApKifugy (z,t)] = A Ki[-2 4+ u(z, t)).

By linearity property and partial derivative properties of double Aboodh-Kamal transform, we
get

1
T¥(g,1) - gAfu(z,0)] - JKlu(0.0) = ; +F(g,r). (6.11)
Substituting
1 1 T
Au(z,0)] = = + Klu(0,1)] = —,
0] = 5+ K@) =

in (6.11) and simplifying, we get

q-r g-r q-r
—)Flgr) = + =
A TR A
or equivalently,
1 r T
F(g,r)= +=. (6.12)

Taking the inverse double Aboodh-Kamal transform of equation (6.12), we
get the solution of (6.10)

1 T T
a-D-n P

u(z,t) = AJ'K;!
= " .
Example 6.3. Consider the following boundary Poisson equation
Ugy (T, 1) + upg(2,t) = tsinz, (6.13)
subject to the conditions

u(x,0) = 0, ug(x,0) = —sin x,
w(0,t) = 0, (0, 8) = —t.
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Solution.
Applying the double Aboodh-Kamal transform on both sides of equation
(6.13), we get

T‘2

q(q* +1)

Using given initial conditions and arrangement, equation (6.14) becomes

(P 1) = K00~ Kl 0045 Flr) A0~ Ain(e.0) = . (610

F( ) ,,.2 ,2 ,2 1
r) = - — — — %~
q’ @?r2+1)q(¢*+1) q q(¢>+1)

2

- .15
oqlgr 1) (6.15)

Taking the inverse double Aboodh-Kamal transform of equation (6.15), we
get the solution of (6.13)

u(x = YK 777.2

= —tsinx.

Example 6.4. Consider the following partial differential equation

Uy (2,1) — ug(z, 1) =0, (6.16)
subject to the conditions
u(z,0) =sinz = iy (z), ut(z,0) =2 = hy(z),
u(0,t) = 2t = hy(t), u,(0,1) = cost = iy ().

Solution.

Applying the double Aboodh-Kamal transform on both sides of equation
(6.16), we get

2 (g.r) - K[u(0,1)] - %]K[uw((),t)] - %F(q.r} ; %A[H(I.U)] T Aluglz,0)] = 0. (6.17)

Substituting
Al (g = Alhola)] =
qg* +1) i
K[ha(r)] = 2* K[hy(r)] = 152,
in (6.17) and simplifying, we get
Flgr) = — " 4 ﬁ (6.18)

gl +1) (1+72) ¢
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Taking the inverse double Aboodh-Kamal transform of equation (6.18), we
get the solution of (6.16)

d@E D12 g

= sinxcost + 2t.

Example 6.5. Consider the following linear telegraph equation in the form

” 2
w(x,t) = AJ'K;! |: ! d + 2’—i|

Upe (2,1) = wge (2, 1) + wg(z, 1) + u(z, 1), (6.19)
with the conditions
u(z,0) =e" = hy(x), u(2,0) =—e® = hy(z),
u(0,t) =e ' =hy(t), u(0,1) =e "= hy(t).

Solution.
Substituting
1 -1 r r
hi(q) = p P— L ha(q) = pro— hs(r) = RETk hy(r) = Atr)

in (6.5) and simplifying. we get the solution of (6.19)
r? (@®r? —r2—r—1)
(@22 =12 —r—1) qr(q—1)(1+7r)

ul(x, t) = A,,;lﬁrr,_l|:

1ge—1 1 r
- A [qmuuw)]

— e.’l:*:‘.

Example 6.6. Use the double Aboodh-Kamal transform method to solve the
nonhomogeneous partial differential equation

w2, t) — gy (2, t) = -6, (6.20)
subject to the conditions
u(z,0) = 2% +sing = by (), w(z,0)= —sinz = fiy(z),
u(0,t) = 0=1ig(t), us(0,8)=  €7* = hy(t).

Solution.
Applying the double Aboodh-Kamal transform on both sides of equation
(6.20), we have

A Ky [ug (e, t) — vge(x, )] = A K [—6x].

By linearity property and partial derivative properties of double Aboodh-
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Kamal transform, we get

br

1 1
SFlgr) = Afu(z,0)] - ¢"Flq,7) + K[u(0, )] + gK[uz(O, t) = e (6.21)
Substituting
6 1 r
hi(q) = s + @0 hg(r) =0, hy(r) = Tt
in (6.21) and simplifying, we get the solution of (6.20)
R | r 6(1—g*r) r (1—q*r)
upt) = 4K [<1q2r> F T T-@a@ D
U r
- AR S
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